Posts

You Do Not Really Know NumPy Until You Understand These Core Truths

Image
Summary : NumPy is the foundation of Python’s data science ecosystem, yet many Data Scientists and ML Engineers use it without understanding what makes it so powerful. This blog post explains core truths about NumPy that reveal why it is fast, memory-efficient, and essential for serious data work. Introduction: The Bedrock of Python Data Science If you work with data in Python, you have almost certainly used libraries like Pandas, Scikit-Learn, or TensorFlow. These tools power everything from data cleaning to machine learning. But have you ever stopped to think about what makes them so fast and efficient? At the foundation of this entire ecosystem is NumPy. Short for Numerical Python, NumPy is not just another library. It is the core engine that turned Python into a serious language for scientific computing. First view the NumPy tutorial for beginners. Then, read on. If you strip away the higher-level tools, you eventually reach NumPy. Understanding how it works chan...

5 Hard-Won Lessons About Fine-Tuning Large Language Models (LLMs)

Image
Summary : Fine-tuning Large Language Models (LLMs) is often misunderstood as a guaranteed path to better performance. In reality, it is a strategic, data-driven, and operational process. My blog post gives five practical lessons learned from real-world fine-tuning client-facing projects, helping you decide when to fine-tune, how to do it efficiently, and what it truly takes to run fine-tuned models in production. First, view my Fine Tuning LLMs video below and then read on. Introduction Fine-tuning is widely seen as the ultimate way to customize a Large Language Model. The common belief is simple: if you want an LLM to excel at a specific task or domain, fine-tuning is the answer. You take a powerful general-purpose model and turn it into a focused specialist. In practice, fine-tuning is far more nuanced. It comes with hidden trade-offs, unexpected risks, and operational responsibilities that are easy to underestimate. Moving from a base model to a production-ready, fine...

RAG for LLMs: 5 Truths That Make AI Accurate and Trustworthy

Image
Summary : Retrieval-Augmented Generation (RAG) fixes one of the biggest issues of large language models: stale or hallucinated facts. This blog post explains five practical, surprising truths about RAG—how it updates knowledge without retraining, alternative architectures, prompt requirements, multimodal future, and the ecosystem that makes RAG practical for production. First, view the RAG Explained video. Then read on to learn how to design safer, more reliable LLM applications. Introduction Large language models are powerful but inherently static: their knowledge reflects only what was in their training data. That makes them prone to hallucinations and out-of-date answers. RAG gives an LLM access to current, verifiable information at query time, by retrieving relevant documents and using them to ground its responses. The RAG concept is simple, but the engineering choices and trade-offs are important. Below are five high-impact truths that change how you build and evaluate RAG sys...