Posts

Showing posts with the label LLM

Retrieval-Augmented Generation (RAG) Framework in LLMs - Interview Questions and Answers

Image
In this post, I explain Introduction to RAG in LLMs (Large Language Models), RAG Concepts in LLMs, Retrieval Modules and Vector Embeddings, Indexing Strategies and Vector Databases, Document Ingestion and Preprocessing, RAG in LLM Python, RAG Frameworks (such as LangChain and LlamaIndex), Retrieve‑Then‑Generate vs Generate‑Then‑Retrieve, Prompt Engineering for RAG and Evaluation Metrics for RAG. You can test your knowledge of LLMs in Python by attempting the Quiz after every set of Questions and Answers. If you want my complete Retrieval-Augmented Generation (RAG) Framework in LLMs document that additionally includes the following important topics, you can message me on LinkedIn : Optimization and Caching, Advanced RAG Techniques (such as RAG multimodal retrieval), RAG in LLamaIndex Example with code, Best Practices and Troubleshooting RAG and RAG in LLM consolidated Quiz with multiple‑choice questions and answers to test your knowledge. Question : What does RAG stand for in...

Introduction to LLMs in Python - Interview Questions and Answers

Image
In this post, I explain LLMs in Python, Python Setup & Installation, Inference with Transformers, Calling ChatGPT API in Python, Python Local Deployment with Hugging Face Models, Prompt Engineering in Python and FineTuning & Custom Training (including LoRA). You can test your knowledge of LLMs in Python by attempting the Quiz after every set of Questions and Answers. If you want my complete Introduction to LLMs in Python document that additionally includes the following important topics, you can message me on LinkedIn : Python Advanced Techniques (Streaming, Batching & Callbacks), Python Efficiency & #Optimization (quantization, distillation, and parameter‑efficient tuning), Integration & Deployment Workflows, LLMs in Python Best Practices & Troubleshooting, and consolidated Introduction to LLMs in Python Quiz (with answer explanations to reinforce learning). Question : What do I mean by "Introduction to LLMs in Python"? Answer : Introduction to LL...

Prompt Engineering for ChatGPT - Interview Questions and Answers with Solved Quiz Questions

Image
In this post, I explain Introduction to Prompt Engineering for ChatGPT, Key Concepts and Prompt Types (such as zero-shot, few-shot, chain-of-thought prompting), Best Practices, Advanced Prompt Engineering Tactics, Prompt Engineering for Coding and Testing, Multi‑modal and Complex Prompts and Evaluating and Iterating Prompts. You can test your knowledge of Prompt Engineering by attempting the Quiz after every set of Questions and Answers. If you want my complete Prompt Engineering for ChatGPT document that additionally includes the following important topics, you can message me on LinkedIn : Prompt Engineering Tools and Frameworks (GitHub repositories, APIs), Ethics and Prompt Safety, Use Cases and Workflows and Interview Preparation and Prompt Engineering Quiz. Question : What is prompt engineering for ChatGPT? Answer : Prompt engineering for ChatGPT is the deliberate design and structuring of input text to guide the model’s behavior toward desired outputs. By crafting precise...

Generative AI with Large Language Models - Interview Questions and Answers with Solved Quiz Questions

Image
In this post, I explain Introduction to Generative AI with Large Language Models, Key Concepts & Definitions, Underlying Models: Transformers & Beyond, Modeling andTraining Foundations, Sampling & Decoding for Generation Quality, Prompting Strategies for Generative AI (zero-shot, few-shot, chain-of-thought prompting, role prompting, and advanced prompt tactics), Scaling & Emergent Capabilities in Generation, Mitigating Hallucination & Ensuring Output Reliability -RAG and grounding, and Advanced Generation: Multimodality & Specialized Content. If you want my full Gen AI with LLMs document also including the following topics, you can use the Contact Form (in the right pane) or message me in LinkedIn: Popular Generative LLMs & Frameworks (GPT-series, Claude, PaLM, Gemini, LLaMA), Efficiency & Deployment Optimization distillation, quantization, parameter-efficient tuning etc.), Ethics, Privacy & Governance, Generative AI Project Workflow (end-to-end li...