Confusion Matrix in Machine Learning
In this post, I explain Confusion Matrix in detail. Learn Confusion Matrix Definition and Intuition, Claim Approval Example, Confusion Matrix Table Layout, Core Concepts Explained (TP, TN, FP, FN), Confusion Matrix Formulae, Derived Metrics from the Confusion Matrix (Precision, Recall, F1, Specificity), and Visualization and Code. If you want to additionally learn about the following confusion matrix topics or comment, you can do so on my original Confusion Matrix article on LinkedIn here . Thresholding, ROC and PR Curves, Imbalanced Data and the Accuracy Paradox, Multiclass and Multi-Label Confusion Matrices (Visualization and Interpretation), Cost-Sensitive Decisions: Cost Matrix, Business Tradeoffs, and Setting Operational Thresholds, Calibration, Confidence, and When to Trust Model Probabilities, Practical Tips and Troubleshooting (Data leakage, label noise, sampling effects) — confusion matrix tutorial, debugging checklist for AI Developers and AI QA Testers, Ethics, Fairness an...