Posts

Generative AI with Large Language Models - Interview Questions and Answers with Solved Quiz Questions

Image
In this post, I explain Introduction to Generative AI with Large Language Models, Key Concepts & Definitions, Underlying Models: Transformers & Beyond, Modeling andTraining Foundations, Sampling & Decoding for Generation Quality, Prompting Strategies for Generative AI (zero-shot, few-shot, chain-of-thought prompting, role prompting, and advanced prompt tactics), Scaling & Emergent Capabilities in Generation, Mitigating Hallucination & Ensuring Output Reliability -RAG and grounding, and Advanced Generation: Multimodality & Specialized Content. If you want my full Gen AI with LLMs document also including the following topics, you can use the Contact Form (in the right pane) or message me in LinkedIn:  Popular Generative LLMs & Frameworks (GPT-series, Claude, PaLM, Gemini, LLaMA), Efficiency & Deployment Optimization distillation, quantization, parameter-efficient tuning etc.), Ethics, Privacy & Governance, Generative AI Project Workflow (end-to-e...

Generative AI Chatbot to learn about Generative AI

Symbolic Generative AI Knowledge Bot Symbolic Generative AI Knowledge Bot This is a symbolic AI chatbot designed to provide knowledge about Generative AI concepts, such as LLMs, GANs, Transformers, Datasets, and Applications. This chatbot uses symbolic reasoning to infer answers from a defined knowledge base. Get GitHub code here . Learn how it works on YouTube here . Features Dynamic reasoning based on entities and relationships from the knowledge base. Fallback responses for unmatched queries. Easily extensible knowledge base (in JSON format). Type a query about GenerativeAI (e.g., "Tell me about LLMs"). No capitalization needed! Supported terms: GenerativeAI, Datasets, LLMs, Diffusion Models, GANs, Transformers, Applications, Ethics Send Clear Tip: ask using natural language, e.g., "Tell me about GANs" or "What are the limitations of GenerativeAI?" Small d...

Confusion Matrix in Machine Learning

Image
In this post, I explain Confusion Matrix in detail. Learn Confusion Matrix Definition and Intuition, Claim Approval Example, Confusion Matrix Table Layout, Core Concepts Explained (TP, TN, FP, FN), Confusion Matrix Formulae, Derived Metrics from the Confusion Matrix (Precision, Recall, F1, Specificity), and Visualization and Code. If you want to additionally learn about the following confusion matrix topics or comment, you can do so on my original Confusion Matrix article on LinkedIn here . Thresholding, ROC and PR Curves, Imbalanced Data and the Accuracy Paradox, Multiclass and Multi-Label Confusion Matrices (Visualization and Interpretation), Cost-Sensitive Decisions: Cost Matrix, Business Tradeoffs, and Setting Operational Thresholds, Calibration, Confidence, and When to Trust Model Probabilities, Practical Tips and Troubleshooting (Data leakage, label noise, sampling effects) — confusion matrix tutorial, debugging checklist for AI Developers and AI QA Testers, Ethics, Fairness an...